
CALCULATING THE HYDRAULIC RESISTANCE 

OF FOAM FLOWS IN TUBES 

V. N. Feklistov UDC 532.529.5 

Formulas are derived for calculating the hydraulic resistance factor of a foam 
flow for isothermal flow in a tube with allowance for compressibility, biphasal- 
ity, and a change in the structure of the foam during its movement. 

In the movement of a foam flow in a horizontal tube under the influence of a longitudi- 
nal pressure gradient dp/dL, the energy involved in the displacement of the medium is expen- 
ded on acceleration, changing the free phase boundary of the flow, and overcoming friction. 

In the general case for a foam flow, due to the specific features of the latter (com- 
pressibility, biphasal nature, and variable specific interphase surface s), none of the 
terms entering into the energy balance equation can be ignored. However, there is no doubt 
that the energy expended on overcoming friction will be a significant portion of the total 
energy balance due to the high structural viscosity of a foam flow. 

Determining the energy loss due to friction and the associated hydraulic resistance 
factor X is an important problem in the study of foam flows, since knowledge of the hydraulic 
resistance is necessary in designing jet-mixing type foam generators. 

The coefficient X during foam movement was determined in [i, 2] from the Darcy--Weisbach 
relation without allowance for acceleration and changes in the phase boundary, since it was 
assumed that dp/dL = dPfr/dL. Existing models for calculating the loss to friction for two- 
phase flows, such as the homogeneous model and the model of Lockhart--Martinelli [3], do 
not give a good agreement with the empirical data since they do not consider the features of 
the foams. 

Compressibility was first accounted for in [4] in determining X for a two-phase flow 
(water--air type) at high concentrations of the liquid phase (>10% by volume). 

In the present work, we propose to experimentally substantiate calculating the hydrau- 
lic resistance factor X in the cross section of a tube from measured hydrodynamic (p, Ap, u) 
and fundamental structural (K, d, s) parameters of a foam flo~. 

Let us write the energy equation for a one-dimensional horizontal foam flow with terms 
which account for acceleration and the energy losses due to a change in the free phase bound- 

ary: { u~ ~ dE u 2 dL 
dp -1- d -t- + ~ - -  - -  = O. (1) 

~ ' ~ g )  ? 2g D 

it may be assumed that the phases do not slide relative to each other during movement of the 
foam (u'= u" = u) and that the foam is quasihomogeneous and isothermal. Since the change in 
the free surface between the phases during the movement of the foam is considered first, let 
us examine the third term in Eq. (i) in greater detail. 

Due to the presence of surfactants in the liquid phase, the foam flow takes the form 
of a highly dispersed bubbled structure with a large specific interphase surface s ~ 105-106 
m2/m 3. With isothermal expansion of the flow, there is an increase in the expansion ratio 
K and the weighted mean diameter of the bubbles d. A simultaneous change in these two param- 
eters of the flow leads to a change in s, and a certain amount of energy is expended on 
this change in s. 
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Fig. i. Dependence 
of energy loss of 
flow ~ i on pressure 
p, Pa: a) Ko=10; 
b) 50; c) 200. 

Taking s =---- (see [5], for example) and assuming that the relation d = do~po~ is 
d K 

valid for isothermal expansion, we may determine the expenditure of the energy of the flow 
on changing the free interphase surface of the foam structure from the following expressions 

dE ads 6o K (2)  
~ 3 / . ~  

Y ? do l 'Po  ? 

Using the continuity equation of the flow uyF = G and the equation of state for the gas 
phase p/y"= RT, it is not difficult to express current values of u K, and u through the 
pressure p in a given cross section and the quantities Ko and y~ at the outlet of the flow 
from the tube. 

Substituting Eq. (2) in (i) along with the values of y, K, and u expressed through p, 
after transformation we obtain a differential equation connecting p with L: 

C pdp 2~D dp + B ~ p ( ~ - - 2 p ) d p =  - - ~ d L ,  (3) 
+ p p (~ + p) (a + p)3 

where 

Integration of Eq~ 
following expression for X after the appropriate transformations: 

C - g~2D5 
8 c ~  [ ' f  + (z(o - -  1) ~,~]; o; = (Ko - -  1) p,,; 

B g~2DSa~z 
- 3 - h "  + i f ( o - -  1 )~ ]1 .  

4do I /Po G'~ 
(3) within the limits of the given section of tube of length L gives the 

where 
X = • ---- [ 1 -- xl -- • -- • ~'f, (4) 
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Fig. 2. Comparison of 
results of calculations 
for friction: i) foam 
model; 2) homogeneous 
model; 3) Lockhart-- 
Martinelli model; a) u = 
1.6 m/sec; b) 4.3; c) 
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Let us analyze the quantitative contribution of each term entering into the factor 
with %f in Eq. (4) for specific parameters of a foam flow that might be realized in an 
experiment: G = 8.16 N/sec, ~ = 72.10 -3 N/m, do = 0.04 mm, D = 50 mm, Ap = 9.8-103 Pa. Figure 
1 shows calculated values of .~, ~, and ~a for these flow parameters in relation to p at 
Ko = i0, 50, and 200. It is apparent that the change in ~, ~a, and ws is greater, the lower 
the pressure of the flow and the higher the value of Ko. Within the investigated pressure 
interval p = 10s-106 Pa, the quantity ~a changes its sign at Ko = i0 (Fig. la). For Ko = 50 
and 200, the quantity ~s changes sign at p > 10s Pa. The change in the sign of ~a indicates 
that the value of s may decrease with movement of the foam, given a foam with certain hydro- 
dynamic parameters. Thus, part of the energy of the flow is liberated, and then dissipated. 

Thus, the calculations established that, generally, in empirically determining % it is 
necessary to consider the features of foam flows. These features are accounted for by the 
terms ~:, ~2, and ~, determining the portion of the flow energy expended on compression, 
acceleration, and changing the free surface, respectively. 

Figure 2 shows experimental data for friction obtained by the proposed method (curves 
i) and data calculated in accordance with well-known models of two-phase flows -- the homo- 
geneous model (curves 2) and the Lockhart--Martinelli model (curves 3) -- for the same ini- 
tial data. 

It is apparent from Fig. 2 that there is substantial diagreement between the empirical 
and theoretical results. This is due to the fact that the foam is a structured two-phase 
system, the high viscosity of which leads to high values of friction during movement. This 
latter circumstance is not taken into account by the well-known theoretical models and shows 
that they should not be used to calculate friction in the movement of foams. 

NOTATION 

p, pressure in a cross section of the tube; Ap, total pressure drop on a section of 
the tube; APfr, pressure drop due to friction on a section of the tube; u, mean flow rate; 
y, specific gravity; K, expansion ratio; T, flow temperature; R, universal gas constant; 
G, weight flow rate; X, weight gas flow rate; d, weighted mean diameter of bubble; o, sur- 
face tension coefficient; D, tube diameter; L, length of section of tube; F, cross-sectional 
area of tube; Indices: ', liquid phase; ", gas phase; 0 refers to atmospheric conditions 
for p = 9.8.104 Pa. 
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TIME TO COOL A CRYOGENIC OBJECT BY A 

GASEOUS CRYOGENIC AGENT 

S. P. Gorbachev, A. A. Krikunov, 
and O. A. Goncharuk 

UDC 536.483 

Dependences to compute the cooling time of a single-channel object are obtained 
theoretically and confirmed experimentally. 

The heat-transfer--flow-through part of modern cryogenic apparatus is a system of chan- 
nels with L/d > i000 as a rule. Cooling such apparatus, i.e., reducing the temperature from 
the initial to the working value, is performed by a single-phase cryogenic agent. The cool- 
ing time here can reach several days. The purpose of the present paper is to determine the 
cooling time and to estimate the parameters influencing its value most strongly. 

The problem can be formulated as follows: A cryogenic agent whose temperature does not 
vary during the cooling process goes into a channel with a constant initial temperature. 
Determine after what time the end of the channel takes on the temperature of the cryogenic 
agent. 

The solution applied to a steam-generating channel, obtained in [i, 2], can be used 
to find the cooling time. The dynamic process is described in [i, 2] by two energy equa- 
tions 

Dcp OT + 6cp 0 7 ' = 0 _ T ,  
a~ Ow aU Oz 

O0 (1) Mc~ - -  = 0 -  T 
aF~ O~ 

with the boundary conditions 

O(z, O)= T(z, O)= To, T(0 ,  ~ ) =  T m = const. 

By introducing the new independent variables 

; = z~F~ ~--  z/W a~ ( 2 )  
LGc---'---S ' ~ - -  M c ~  

we obtain the solution of system (i) in the form of infinite series in ~ and ~. A singular- 
ity of this solution is the determination of the finite value of the time for any point of 
the channel to reach the working temperature. The complex form of the solution forced the 
authors of [i, 2] to tabulate the dimensionless temperature T/Tin for a broad range of values 
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